

Kickoff meeting

PulSAr
Pulse Shape Analysis for the GSI Scanner

Framework

GSI Scanner / PSA Activities

● AGATA symmetric crystal scan (N.G.)
● Cluster Neutron Damage (L.C.)
● Hybrid Test (Palit, T.H.)
● Ge timing (M.B. (summerst.)) ...ongoing...
● Cluster Neutron Damage (summerst.) (no scanner)
● AGATA asymmetric crystal scan (M.L.,T.H.) ... analysis pending...

Go4MBS root

online
event-by-event

offline analysis

Coding Example: Baseline subtraction

Subtract baseline from signal

Instead of fiddling with arrays and stuff we want to do...

… and

self-documenting code

What root can do for us / What root can't do for us

Fitting data can be done by using TlinearFitter

 Same thing in a (general) function

"Timing corrections" functions

1.s
RAW

,T
RAW s,T

2.{s,T} c

1. Prepare data, i.e.
- time alignment
- baseline subtraction
- normalize
- calculate rise-times (s)

2. Fit data
- use root TLinearFitter
- output = coeficients of the fit

3. Apply fit
- use coefficients to estimate T ≈ T* = c.s

4. Verify Fit (actually before 3.)
- check correlations
- output = quality of the fit

4.{s,T},c E(T-T*)

3.s,c T*

Plugins via Interfaces (cf. Go4)

User does not need to know details of
implementation but only its interface

Parts of code that are plugged in via an
interface can be exchanged without
touching the rest of the code

Public Interface

User code

Abstract parametric PSA functions

1.s
RAW

,X
RAW s,X

2.{s,X} c

1. „Prepare“

2. „Fitting“
- simple linear fit: F(s) = c.s
- model param., e.g F(s) = a*G(s) + b*H(s)
- …

3. Apply: F(s) = X*

4. Verify Fit
- check correlation
- output = quality of the fit

4.{s,X},c E(X-X*)

3.s,c X*

PulSAr

„low level“ functions root

PSA algorithms

User code

Example:

User reads data

and calls

PulseShape->SubtractBaseline()

which calls

double getAverage(double* a,int N);
void addToArray(double* a,double b,int N);

TODO:
● Fast PSA as NARVAL actor
● Analyse data from AGATA scan -> create Pulse Shape Database
● Continue on "Timing Corrections via PSA"

→ PulSAr – Framework for Pulse Shape Analysis and GSI Scanner
One Framework with code needed for PSA & Scanner analysis
Provides interfaces to Go4, NARVAL, ...

SCANNER ANALYSIS ISSUES

Scanner Analysis: Graphical Cut Overhead

PSD
PxP pixel Scanned Volume

PxPxP voxel

„old“
For each voxel (i.e. P3 times) :

Apply graphical cut
N / P2 events from each dataset

Compare the two datasets
N2 / P4 comparisons

→ Total
#comparisons = N2 / P
#loading an event = 2NP
#load PSD coords = 2NP3 !!!

N – total number of events in each dataset

„no cuts“
For each pair of signals:

Check if trajectories cross
Compare them

→ Total
#comparisons = N2

#loading an event = 2N
#load PSD coords = 0

„cut before“
Sort events: one file per psd pixel

N / P2 events per pixel

For each front pixel (i.e. P2 times)
Select files from side (N / P events)
Compare them (N2 / P3)

→ Total
#comparisons = N2/P
#loading an event = N(P+1)
#load PSD coords = 0

Scanner Analysis Graphical cut
continued...

Graphical cut = select one voxel and then all trajectories that pass this voxel

Frontview

This two events but not this two Are we wasting lots of good events?
are compared

x x

Write, Test & Debug Only Once

- more work in the beginning

+ write, test & debug only once

PSA & Scanner "Synergies"

PSA for AGATA: T0 determination

● shift measured signal in time w.r.t. basis signal to get best match → T0

Scanner: PSD position determination

● shift profile of collected light w.r.t. reference signal to get best match → x/y
position

...seems completely unrelated, but actually it is the same task!

Finding PSD position is already "almost decoupled":

 pos_x=brent(XAnodes,Refx,ax, bx, cx,&counter);

+ takes any TH1 histograms as input

- but: many "magic numbers"

- documentation: ~0

(Scanner: LYSO Gain Matching ...seems very different, but also quite similar)

Documentation

DoxyGen: Standard tool to create documentation from annotated C++ code

+ use wiki@gsi to collect
documents

mailto:wiki@gsi

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15

