MC Simulations for the PreSPEC campaign of AGATA at GSI

César Domingo Pardo

GSI Helmholtzzentrum für Schwerionenforschung GmbH

GSI, 30.4.2010

AGATA@GSI: Set-up, mechanics, detectors

- AGATA Geometry for experiments at GSI FRS (PRESPEC)
- Performance in terms of efficiency and resolution
- Angular dependence of the g-ray efficiency for several distances
- Relativistic dependence of the efficiency on β
- Performance vs. number of double and/or triple cluster available
- Efficiency performance for pure E2 transitions
- MC Simulation of a Fragmentation experiment
- MC Simulation of the line-shape for DSAM analysis
- First steps towards implementation of background in the simulations
- Outlook
- Conclusion

Geometry cases

• S2 + 5 Double Cluster detectors closing part of the central hole (15-16cm?). Remains shell with 5 crystals hole + pentagon hole

AGATA S2 Geometry

AGATA S2' Geometry

10 triple Cluster + **5 double** Cluster

Geometry cases

• S2 + 5 Double Cluster detectors closing part of the central hole (15-16cm?). Remains shell with 5 crystals hole + pentagon hole

Beam pipe diameter = 9 - 12 cm

Blue crystals are at diameter = 17 cm

Room for a chamber 46cm diameter

• S2' Geometry + Spherical Chamber

AGATA S3 + 1 Agata Double Cluster = S3'

Alternative geometry:

 S3 + 1 Double Cluster detector closing part of the central hole (10-11 cm?). Remains shell with 4 crystals hole + pentagon hole.

10 triple Cluster (Asym)

1 double Cluster

Beam pipe diameter = 10 cm

- AGATA Geometry for experiments at GSI FRS (PRESPEC)
- Performance in terms of efficiency and resolution
- Angular dependence of the g-ray efficiency for several distances
- Relativistic dependence of the efficiency on β
- Performance vs. number of double and/or triple cluster available
- Efficiency performance for pure E2 transitions
- MC Simulation of a Fragmentation experiment
- MC Simulation of the line-shape for DSAM analysis
- First steps towards implementation of background in the simulations
- Outlook
- Conclusion

Performance comparison: general aspects

- Systematic study of efficiency and resolution vs. distance for all geometries
- "Reference physics case": (GEANT4 AGATA code from E.Farnea et al.) $E_{\gamma,o} = 1$ MeV, recoil nucleus at $\beta = 0.43$ (E = 100 MeV/u), M $\gamma = 1$ Systematic study several distances sec. target – detector Detector Target ak Efficiency vs offset from centre, geometry; prespecv1, β = 0.5 Beam 10 12 distance from centre (cm distance GSI FRS Spatial Beam Profile FWHM, = 6 cm FWHM, = 4 cm Active target source Position Y (mm DSSSD γ-source Position X (mm) y-source Position X (mm) γ-source Position Y (mm)

S-Geometries Performance comparison: Efficiency

S-Geometries Performance comparison: Resolution

Shell Geometries performance comparison: Summary

Geometry cases

• S2 + 5 Double Cluster detectors closing part of the central hole (15-16cm?). Remains shell with 5 crystals hole + pentagon hole

Beam pipe diameter = 12 cm

- AGATA Geometry for experiments at GSI FRS (PRESPEC)
- Performance in terms of efficiency and resolution
- Angular dependence of the g-ray efficiency for several distances
- Relativistic dependence of the efficiency on β
- Performance vs. number of double and/or triple cluster available
- Efficiency performance for pure E2 transitions
- MC Simulation of a Fragmentation experiment
- MC Simulation of the line-shape for DSAM analysis
- First steps towards implementation of background in the simulations
- Outlook
- Conclusion

Angular dependence of the efficiency:

- AGATA Geometry for experiments at GSI FRS (PRESPEC)
- Performance in terms of efficiency and resolution
- Angular dependence of the g-ray efficiency for several distances
- Relativistic dependence of the efficiency on β
- Performance vs. number of double and/or triple cluster available
- Efficiency performance for pure E2 transitions
- MC Simulation of a Fragmentation experiment
- MC Simulation of the line-shape for DSAM analysis
- First steps towards implementation of background in the simulations
- Outlook
- Conclusion

Relativistic dependence of the efficiency:

- AGATA Geometry for experiments at GSI FRS (PRESPEC)
- Performance in terms of efficiency and resolution
- Angular dependence of the g-ray efficiency for several distances
- Relativistic dependence of the efficiency on β
- Performance vs. number of double and/or triple cluster available
- Efficiency performance for pure E2 transitions
- MC Simulation of a Fragmentation experiment
- MC Simulation of the line-shape for DSAM analysis
- First steps towards implementation of background in the simulations
- Outlook
- Conclusion

Dependence of the efficiency on the number of triple (double) clusters

S2' Configuration = 10 ATC + 5 ADC

 Δ ATC (Agata Triple Cluster)

□ ADC (Agata Double Cluster)

Dependence of the efficiency on the number of triple (double) clusters

S2' Configuration = 10 ATC + 5 ADC

 Δ ATC (Agata Triple Cluster)

□ ADC (Agata Double Cluster)

Number of clusters missing in the S2' configuration !

- AGATA Geometry for experiments at GSI FRS (PRESPEC)
- Performance in terms of efficiency and resolution
- Angular dependence of the g-ray efficiency for several distances
- Relativistic dependence of the efficiency on β
- Performance vs. number of double and/or triple cluster available
- Efficiency performance for pure E2 transitions
- MC Simulation of a Fragmentation experiment
- MC Simulation of the line-shape for DSAM analysis
- First steps towards implementation of background in the simulations
- Outlook
- Conclusion

Dependence of the efficiency on the g-ray multipolarity (Isotropic vs. pure E2)

Dependence of the efficiency on the g-ray multipolarity (Isotropic vs. pure E2)

Dependence of the efficiency on the g-ray multipolarity (pure E2)

Dependence of the efficiency on the g-ray multipolarity (pure E2)

- AGATA Geometry for experiments at GSI FRS (PRESPEC)
- Performance in terms of efficiency and resolution
- Angular dependence of the g-ray efficiency for several distances
- Relativistic dependence of the efficiency on β
- Performance vs. number of double and/or triple cluster available
- Efficiency performance for pure E2 transitions
- MC Simulation of a Fragmentation experiment
- MC Simulation of the line-shape for DSAM analysis
- First steps towards implementation of background in the simulations
- Outlook
- Conclusion

Realistic MC Simulation of a fragmentation experiment

Realistic MC Simulation of a fragmentation experiment

Realistic MC Simulation of a fragmentation experiment

እ EnergyVertex

እ EventNumber

🔖 ProjectileVertex

እ Theta.Gamma.Lab

እ Theta.Gamma.Rest

🔖 Vertex Gamma

🐚 VProjectileAfterTarget

🗽 VProjectileBeforeTarget

🔖 Halflife

እ VGamma

DecayTimeAfterInteraction

36 Objects

Realistic MC Simulation of a fragmentation experiment

GAMMA 1

1000.0000 RECOIL 0.5000 0.0000 0.0000 0.0000 1.0000 0.0000 SOURCE 0 0 0.0000 0.0000 0.0000 \$ -1 1401.723 -0.43045 0.48009 0.76434 0 73.617 -142.729 141.623 234.825 52 1.053292939.475 -143.302 150.765 245.890 52 1.12929 148.895 -151.199 143.686 236.472 51 1.08329 155.373 151.207 143.675 236.479 51 1.08329 251.516 -129.956 144.860 230.891 41 1.00729 166.208 -129.833 144.792 230.981 41 1.00829 163.364 -129.791 144.692 230.949 41 1.008 29 132.162 -129.764 144.711 230.911 41 1.008 86.873 - 129.765 144.716 230.913 41 291.008-1 1627.135 0.23197 -0.26644 0.93552 1 $1 \ 126.640 \ 125.339 \ -75.549 \ 240.008 \ 34$ 1.154334.250 120.598 -82.006 265.573 43 1.0651 1 71.117 120.608 -81.984 265.633 43 1.065160.091 120.600 -81.997 265.637 43 1.0651 1 11.067 120.642 -81.972 265.678 43 1.06545.200 120.643 -81.971 265.679 43 1.0651 -1 1087.822 -0.71426 -0.56881 0.40778 2 -1 1257.962 -0.08354 0.77764 0.62313 3 24 129.869 -24.004 192.131 156.311 05 0.83624 30.817 -34.318 197.026 157.088 15 0.874

•

Realistic MC Simulation of a fragmentation experiment

Another example: line shape analysis on first 2⁺ of ⁷⁴Ni

Realistic MC Simulation of a **fragmentation** experiment: DSAM Analysis

- AGATA Geometry for experiments at GSI FRS (PRESPEC)
- Performance in terms of efficiency and resolution
- Angular dependence of the g-ray efficiency for several distances
- Relativistic dependence of the efficiency on β
- Performance vs. number of double and/or triple cluster available
- Efficiency performance for pure E2 transitions
- MC Simulation of a Fragmentation experiment
- MC Simulation of the line-shape for DSAM analysis
- First steps towards implementation of background in the simulations
- Outlook
- Conclusion

Realistic MC Simulation: Background

Realistic MC Simulation: Background

170.8 129.6

- The AGATA S2' configuration (10 ATC + 5 ADC) shows the best performance in terms of efficiency (11% to 17.5%) and γ -ray resolution (6 keV to 10 keV FWHM).
- The angular range between θ = 15deg and θ = 90deg can be effectively covered for targetarray distances between 43.5 cm and 8.5 cm, respectively. Such distances are compatible with an spherical target-chamber, 46cm in diameter.
- The maximum efficiency (distance = 8.5 cm) decreases (in absolute terms) by about 2% (1%) for each Double (Triple) Cluster missing from the S2' configuration (10 ATC + 5 ADC). The "nominal" efficiency (distance = 23.5 cm) decreases about 1% for each missing Double or Triple cluster.
- For pure E2 transitions, the efficiency seems to remain constant at about 16% in the distance range from 10 cm to 23.5 cm (preliminary result).
- The present code allows one to simulate easily fragmentation experiments, and study lineshape effects and optimize the setup accordingly.
- Still pending, the simulation of a representative Coulex experiment, and to include properly background events and gamma-ray and particle tracking (LYCCA).
- A lot of work has been made for plunger and DSAM experiments (M. Reese TU-Darmstadt, Group of A. Dewald, Uni. Koeln, E.Farnea, C.Michelagnoli, LNL).

$$\frac{dW}{d\Omega^{cm}} = 1 - \frac{5}{14} \frac{I+1}{2I-1} P_2(\cos\theta) - \frac{9}{56} \frac{(I+1)(I+2)}{(2I-3)(2I-1)} P_4(\cos\theta)$$

$$\cos \mathcal{G}^{lab} = \frac{\cos \theta + \beta}{1 + \beta \cos \theta}$$

$$\frac{dW}{d\Omega^{lab}} = \frac{dW}{d\Omega^{cm}} \frac{d\Omega^{cm}}{d\Omega^{lab}} \qquad \qquad \frac{d\Omega^{cm}}{d\Omega^{lab}} = \left(\frac{E_{\gamma}}{E_{\gamma 0}}\right)^2 = \frac{1-\beta^2}{\left(1-\beta\cos\theta\right)^2}$$

Ersatzfolien

Outline

- 1. Basics: MC code & event reconstruction
- 2. Cross check of the results
- 3. Particular constraints for the setup at GSI
- 4. Geometries: shell and compact setups
- 5. Performance comparison
- 6. Viability of additional γ-ray detectors: RISING, HECTOR, etc
- 7. Gain in performance from 10 to 12 Clusters
- 8. Outlook and conclusion

General aspects: MC code

AGATA Code from Enrico Farnea et al. http://agata.pd.infn.it/

GEANT4

Setup geometry

Primary events,

(e.g. 1 MeV γ -ray @ β = 43%)

GAMMA 1 1000.0000 RECOIL 0.5000 0.0000 0.0000 0.0000 1.0000 0.0000 SOURCE 0 0 0.0000 0.0000 0.0000 \$ -1 1401.723 -0.43045 0.48009 0.76434 0 73.617 -142.729 141.623 234.825 52 291.05329 39.475 -143.302 150.765 245.890 52 1.12929 148.895 151.199 143.686 236.472 51 1.08329 155.373 - 151.207 143.675 236.479 51 1.08329 251.516 129.956 144.860 230.891 41 1.007 29 166.208 129.833 144.792 230.981 41 1.008 29 163.364 -129.791 144.692 230.949 41 1.008 29 132.162 -129.764 144.711 230.911 41 1.0082986.873 129.765 144.716 230.913 41 1.008 -1 1627.135 0.23197 -0.26644 0.93552 1 126.640 125.339 -75.549 240.008 34 1 1.1541 334.250 120.598 -82.006 265.573 43 1.06571.117 120.608 81.984 265.633 43 1.0651 160.091 120.600 -81.997 265.637 43 1.0651 1 11.067 120.642 -81.972 265.678 43 1.06545.200 120.643 -81.971 265.679 43 1 1.0651087.822 -0.71426 -0.56881 0.40778 2 -1 -1 1257.962 -0.08354 0.77764 0.62313 3 24 129.869 24.004 192.131 156.311 05 0.836 30.817 -34.318 197.026 157.088 15 240.874

Simulation output:

list mode ascii file

General aspects: MC code

Setup geometry Primary events, (e.g. 1 MeV g-ray @ b = 50%)

GAMMA 1 1000.0000 RECOIL 0.5000 0.0000 0.0000 0.0000 1.0000 0.0000 SOURCE 0 0 0.0000 0.0000 0.0000 \$ -1 1401.723 -0.43045 0.48009 0.76434 0 29 73.617 142.729 141.623 234.825 52 1.05329 39.475 143.302 150.765 245.890 52 1.12929 148.895 -151.199 143.686 236.472 51 1.08329 155.373 -151.207 143.675 236.479 51 1.08329 251.516 -129.956 144.860 230.891 41 1.00729 166.208 129.833 144.792 230.981 41 1.00829 163.364 -129.791 144.692 230.949 41 1.00829 132.162 -129.764 144.711 230.911 41 1.00829 86.873 129.765 144.716 230.913 41 1.008-1 1627.135 0.23197 -0.26644 0.93552 1 1 126.640 125.339 -75.549 240.008 34 1.1541 334.250 120.598 -82.006 265.573 43 1.06571.117 120.608 -81.984 265.633 43 1.0651 1 160.091 120.600 -81.997 265.637 43 1.065 $1 \quad 11.067 \quad 120.642 \quad -81.972 \quad 265.678 \quad 43$ 1.065 $1 \quad 45.200 \quad 120.643 \quad -81.971 \quad 265.679 \quad 43$ 1.065-1 1087.822 -0.71426 -0.56881 0.40778 2 -1 1257.962 -0.08354 0.77764 0.62313 3 24 129.869 24.004 192.131 156.311 05 0.836 $24 \quad 30.817 \quad 34.318 \quad 197.026 \quad 157.088 \quad 15$ 0.874

- Total deposited energy at each event:
 - Loop over all hits/event (perfect tracking)
 - mgt code
- Doppler correction:
 - Angle subtended by largest Edep hit

$$E_o = E \frac{1 - \cos \theta}{1 - \frac{1}{2}}$$

Setup geometry Primary events, (e.g. 1 MeV g-ray @ b = 50%)

GAMMA 1 1000.0000 RECOIL 0.5000 0.0000 0.0000 0.0000 1.0000 0.0000 SOURCE 0 0.0000 0.0000 0.0000 0 \$ -1 1401.723 -0.43045 0.48009 0.76434 0 29 73.617 -142.729 141.623 234.825 52 1.05329 39.475-143.392 150.765 245.899 52 1.12948.995-151.199 143.656 236.442 51 1.08329 155.373 151.207 143.675 236.479 51 1.08329 251.516 129.956 144.860 230.891 41 1.00729 166.208 129.833 144.792 230.981 41 1.00829 163.364 -129.791 144.692 230.949 41 1.00829 132.162 -129.764 144.711 230.911 41 1.00829 86.873 -129.765 144.716 230.913 41 1.008-1 1627.135 0.23197 -0.26644 0.93552 1 1 126.640 125.339 -75.549 240.008 34 1.1541 334.250 120.598 -82.006 265.573 43 1.065 $1 \quad 71.117 \quad 120.608 \quad -81.984 \quad 265.633 \quad 43$ 1.0651 160.091 120.600 -81.997 265.637 43 1.065 $1 \quad 11.067 \quad 120.642 \quad 81.972 \quad 265.678 \quad 43$ 1.065 $1 \quad 45.200 \quad 120.643 \quad -81.971 \quad 265.679 \quad 43$ 1.065-1 1087.822 -0.71426 -0.56881 0.40778 2 -1 1257.962 -0.08354 0.77764 0.62313 3 24 129.869 24.004 192.131 156.311 05 0.836 $24 \quad 30.817 \quad 34.318 \quad 197.026 \quad 157.088 \quad 15$ 0.874

- Total deposited energy at each event:
 - Loop over all hits/event (perfect tracking)
 - mgt code
- Doppler correction:
 - Angle subtended by largest Edep hit

$$E_o = E \frac{1 - \cos \theta}{1 - \frac{1}{2}}$$

Setup geometry Primary events, (e.g. 1 MeV g-ray @ b = 50%)

GAMMA 1

1000.0000

RECOIL 0.5000 0.0000 0.0000 0.0000 1.0000 0.0000 SOURCE 0 0 0.0000 0.0000 0.0000

\$

-1 1401.723 -0.43045 0.48009 0.76434 0 73.617 -142.729 141.623 234.825 52 291.05329 39.475 -143.302 150.765 245.890 52 1.12929 148.895 -151.199 143.686 236.472 51 1.08329 155.373 - 151.207 143.675 236.479 51 1.083 $29 \ \ 251.516 \ \ 129.956 \ \ 144.860 \ \ 230.891 \ 41$ 1.00729 166.208 - 129.833 144.792 230.981 41 1.008 29 163.364 -129.791 144.692 230.949 41 1.008 29 132.162 -129.764 144.711 230.911 41 1.00886.873 -129.765 144.716 230.913 41 1.008 29-1 1627.135 0.23197 -0.26644 0.93552 1 1 126.640 125.339 -75.549 240.008 34 1.1541 334.250 120.598 -82.006 265.573 43 1.06571.117 120.608 -81.984 265.633 43 1.0651 1 160.091 120.600 -81.997 265.637 43 1.065 $1 \quad 11.067 \quad 120.642 \quad -81.972 \quad 265.678 \quad 43$ 1.06545.200 120.643 81.971 265.679 43 1.0651 -1 1087.822 -0.71426 -0.56881 0.40778 2 -1 1257.962 -0.08354 0.77764 0.62313 3 24 129.869 24.004 192.131 156.311 05 0.8362430.817 34.318 197.026 157.088 15 0.874

Detector response function (by hand):

<u>Intrinsic energy resolution</u>: deposited energy folded with a Gauss distribution to introduce energy resolution (2 keV @ $E\gamma=1$ MeV)

Setup geometry Primary events, (e.g. 1 MeV g-ray @ b = 50%)

GAMMA 1

1000.0000 RECOIL 0.5000 0.0000 0.0000 0.0000 1.0000 0.0000 SOURCE 0 0 0.0000 0.0000 0.0000 \$ -1 1401.723 -0.43045 0.48009 0.76434 0 73.617 -142.729 141.623 234.825 52 291.05329 39.475 -143.302 150.765 245.890 52 1.12929 148.895 -151.199 143.686 236.472 51 1.08329 155.373 - 151.207 143.675 236.479 51 1.08329 251.516 -129.956 144.860 230.891 41 1.00729 166.208 129.833 144.792 230.981 41 1.00829 163.364 -129.791 144.692 230.949 41 1.00829 132.162 -129.764 144.711 230.911 41 1.00829 86.873 -129.765 144.716 230.913 41 1.008-1 1627.135 0.23197 -0.26644 0.93552 1 1 126.640 125.339 -75.549 240.008 34 1.1541 334.250 120.598 -82.006 265.573 43 1.06571.117 120.608 -81.984 265.633 43 1.0651 1 160.091 120.600 -81.997 265.637 43 1.065

- -1
 1087.822 -0.71426 -0.56881
 0.40778 2

 -1
 1257.962 -0.08354
 0.77764
 0.62313 3

 24
 129.869 -24.004
 192.131
 156.311 05
 0.836
- $24 \quad 30.817 \ \ 34.318 \ \ 197.026 \ \ 157.088 \ \ 15 \quad \ 0.874$

Detector response function (by hand):

Intrinsic spatial resolution: x, y, z folded with a Gauss distribution to introduce spatial resolution of 2-5 mm FWHM

General aspects: event reconstruction (example)

Setup geometry Primary events, (e.g. 1 MeV g-ray @ b = 50%)

 $\Delta E = 2 \text{ keV}$ (fwhm) @ $E_{\gamma} = 1 \text{ MeV}$; $\Delta x = 4 \text{ mm}$

Outline

- 1. Basics: MC code & event reconstruction
- 2. Cross check of the results
- 3. Particular constraints for the setup at GSI
- 4. Geometries: shell and compact setups
- 5. Performance comparison
- 6. Viability of additional γ-ray detectors: RISING, HECTOR, etc
- 7. Gain in performance from 10 to 12 Clusters
- 8. Outlook and conclusion

Validation analysis / event reconstruction

http://agata.pd.infn.it/documents/simulations/demonstrator.html

For more information on the simulation code and to obtain the actual code contact Enrico Farnea

Last updated: November 8th 2005

The AGATA Demonstrator

The AGATA Demonstrator Array is an arrangement of five triple clusters of the same kind which will be used to form the final <u>A180 Configuration</u> of AGATA. The performance of such an object will depend in a critical way on its placement relative to the target position. In particular, given the lack of a spherical symmetry, it is sensible to place the detectors closer to the target position compared to the "reference" distance being the target-detector distance of the full A180 Configuration, that is, 23.5 cm. The photopeak efficiency and the P/T ratio as a function of the shift from the geometrical centre are shown in the following plots, where it is assumed that 1 MeV photons are emitted from a point source at rest in the Laboratory reference distance being the same sum of the target to be assumed that 1 MeV photons are emitted from a point source at rest in the Laboratory reference distance being the same sum of the same set of the same

Shift from geometrical centre (cm)

Validation analysis / event reconstruction

Solid symbols: analysis GSI

AGATA Geometry @ GSI

Other aspects

- Background
 - Atomic background (bremsstrahlung)
 - Neutron induced background
 - Scatt. Particle background

- Shielding + P. Detistov work
- Nothing
 - Tests October '09

- Mechanical constraints (holding structure)
- Technical constraints (square beam pipe, cylindrical pipe smallest size compatibel with DSSSD Sec. Target, No Chamber ?)

AGATA Geometry @ GSI θ -Diff. Photopeak Efficiency

AGATA Geometry @ GSI θ -Diff. Energy Resolution

S- and C-Geometries, Optimal Distances

Stepwise geometry optimisation

• Ideal geometry = first approach, first step

- two main dissadvantages:
 - 1. 15 cluster detectors will not be available yet in 2011/2012
 - 2. The beam hole (pentagonal hole) is too narrow for the GSI beam size

• Geometry constraint: triple clusters (not individual crystals)

Hole (11.5 cm) beam-pipe 11 cm

8 Clusters

Hole (11.5 cm) beam-pipe 11 cm

A180euler.list A180eulerprespecv4.list

The Euler angles (degree) and shifts (mm) of the 60 clusters # cl cl# psi(Rz) theta(Ry) phi(Rz) dx dy dz # 0 0 164.302488 21.967863 -5.649422 102.935572 -10.182573 256.432015

44 42.906217 106.291521 -20.916343 # 0 247.916020 -94.750958 -77.567377 45 0 -156.210622 134.706892 15.424027 189.440679 52.266136 -194.518058 46 0 111.584005 131.663878 52.562301 125.572067 164.017668 -183.811468 # # 50 0 111.584005 131.663878 -163.437699 -197.997103 -58.883672 -183.811468 0 -156.210622 134.706892 -128.575973 -122.539465 -153.634630 -194.518058 51 52 0 111.584005 131.663878 -91.437699 -5.182770 -206.502490 -183.811468 53 0 -156.210622 134.706892 -56.575973 108.248439 -164.017668 -194.518058 54 0 111.584005 131.663878 -19.437699 194.793975 -68.741886 -183.811468 55 0 -15.697512 158.032137 41.649422 77.291461 68.741886 -256.432015 56 0 -15.697512 158.032137 113.649422 -41.493043 94.750958 -256.432015 57 0 -15.697512 158.032137 -174.350578 -102.935572 -10.182573 -256.432015 # 58 0 -15.697512 158.032137 -102.350578 -22.124639 -101.044134 -256.432015 59 -15.697512 158.032137 -30.350578 89.261793 -52.266136 -256.432015 # 0

8 Clusters

Hole (11.5 cm) beam-pipe 11 cm

A180euler.list A180eulerprespecv4.list

The Euler angles (degree) and shifts (mm) of the 60 clusters # cl cl# psi(Rz) theta(Ry) phi(Rz) dx dy dz # 0 0 164.302488 21.967863 -5.649422 102.935572 -10.182573 256.432015

#	44	0	42.906217	106.291521	-20.916343	247.916020	-94.750958 -77.567377
	45	0	-156.210622	134.706892	15.424027	189.440679	52.266136 -194.518058
#	46	0	111.584005	5 131.663878	52.562301	125.572067	164.017668 -183.811468
#	50	0	111.584005	5 131.663878	-163.437699	-197.997103	3 -58.883672 -183.811468
	51	0	-156.210622	134.706892	-128.575973	-122.539465	-153.634630 -194.518058
	52	0	111.584005	131.663878	-91.437699	-5.182770 -2	206.502490 -183.811468
	53	0	-156.210622	134.706892	-56.575973	108.248439	-164.017668 -194.518058
	54	0	111.584005	131.663878	-19.437699	194.793975	-68.741886 -183.811468
	55	0	-15.697512	158.032137	41.649422	77.291461	68.741886 -256.432015
	56	0	-15.697512	158.032137	113.649422	-41.493043	94.750958 -256.432015
	57	0	-15.697512	158.032137 -	174.350578	-102.935572	-10.182573 -256.432015
#	58	Û	-15.697512	158.032137	-102.350578	-22.124639	-101.044134 -256.432015
#	59	0	-15.697512	158.032137	-30.350578	89.261793	-52.266136 -256.432015

8 Clusters

Hole (11.5 cm) beam-pipe 11 cm

/Agata/detector/rotateArray Ry(theta) Rz(phi)

radd.rotateY(thetaShift); radd.rotateZ(phiShift);

/Agata/detector/rotateArray Ry(theta) Rz(phi) Rx(psi) /Agata/detector/rotateArray 175.0 30.0 -17.0

radd.rotateY(thetaShift); radd.rotateZ(phiShift); radd.rotateX(psiShift);

8 Clusters

Hole (11.5 cm) beam-pipe 11 cm

/Agata/detector/rotateArray 175.0 30.0 -17.0

The Euler angles (degree) and shifts (mm) of the 60 clusters # cl cl# psi(Rz) theta(Ry) phi(Rz) dx dy dz # 0 0 164.302488 21.967863 -5.649422 102.935572 -10.182573 256.432015

44 0 42.906217 106.291521 -20.916343 247.916020 -94.750958 -77.567377 45 0 -156.210622 134.706892 15.424027 189.440679 52.266136 -194.518058 # 46 0 111.584005 131.663878 52.562301 125.572067 164.017668 -183.811468 # 50 0 111.584005 131.663878 -163.437699 -197.997103 -58.883672 -183.811468 51 0 -156.210622 134.706892 -128.575973 -122.539465 -153.634630 -194.518058 52 0 111.584005 131.663878 -91.437699 -5.182770 -206.502490 -183.811468 53 0 -156.210622 134.706892 -56.575973 108.248439 -164.017668 -194.518058 54 0 111.584005 131.663878 -19.437699 194.793975 -68.741886 -183.811468 55 0 -15.697512 158.032137 41.649422 77.291461 68.741886 -256.432015 56 0 -15.697512 158.032137 113.649422 -41.493043 94.750958 -256.432015 57 0 -15.697512 158.032137 -174.350578 -102.935572 -10.182573 -256.432015 58 0 -15.697512 158.032137 -102.350578 -22.124639 -101.044134 -256.432015 # # 59 0 -15.697512 158.032137 -30.350578 89.261793 -52.266136 -256.432015

8 Clusters

Hole (11.5 cm) beam-pipe 11 cm

 $\Delta E = 2 \text{ keV} \text{ (fwhm)} @ E_{\gamma} = 1 \text{ MeV}; \Delta x = 4 \text{ mm}$

8 Clusters

Hole (11.5 cm) beam-pipe 11 cm

 $\Delta E = 2 \text{ keV}$ (fwhm) @ $E_{\gamma} = 1 \text{ MeV}$; $\Delta x = 4 \text{ mm}$

8 Clusters

Hole (11.5 cm) beam-pipe 11 cm

 $\Delta E = 2 \text{ keV} (\text{fwhm}) @ E_{\gamma} = 1 \text{ MeV}; \Delta x = 4 \text{ mm}$

8 Clusters

Hole (11.5 cm) beam-pipe 11 cm

Efficiency = 10-11%

FWHM = 6-8 keV

 $\Delta E = 2 \text{ keV}$ (fwhm) @ $E\gamma = 1 \text{ MeV}$; $\Delta x = 4 \text{ mm}$

8 Clusters

Hole (11.5 cm) beam-pipe 11 cm

 $\Delta E = 2 \text{ keV}$ (fwhm) @ $E\gamma = 1 \text{ MeV}$; $\Delta x = 4 \text{ mm}$
C1

C3 13.45 deg 5.6 cm 23.4 cm 10 cm

Other viewer's views

Other viewer's views

S4 focal plane room constrained by the DSSSD

S4 focal plane room constrained by the DSSSD

S4 focal plane room constrained by the DSSSD

S4 focal plane constrained by the Scintillation membrane

S3- and C2-Geometries + Chamber 20 cm diameter

C2 performance could be improved by something like C1 18 16 14 12 **S**3 10 **■ S3+Chamber** 8 **C2** C2+Chamber 6 4 2-0- $\gamma\gamma$ -Eff. γ-Sensitivity FWHM γ -Eff. (%) (%) (keV) (Rising Units)

S3- and C2-Geometries + Chamber 20 cm diameter

C2 performance could be improved by something like C1

Workshop on AGATA at GSI: reference physics cases

Geometry cases

- Task 1: S2 + 5 Double Cluster detectors closing part of the central hole (15-16cm?). Remains shell with 5 crystals hole + pentagon hole
- Task 2: S3 + 1 Double Cluster detector closing part of the central hole (10-11 cm?). Remains shell with 4 crystals hole + pentagon hole.
- Task 3: C2 geometry, with clusters in 2nd ring pointing to target, and 3rd ring (15 Clusters total)

Physics cases evaluate realistically the performance of the optimal detection system in:

- Task 1: Coulex experiment. Example: Coulex of ¹⁰⁴Sn at 100 MeV/u on a 0.4 g/cm² Au-target.
 Primary beam ¹²⁴Xe.
- Task 2: Fragmentation experiment. ⁵⁴Ni at 100 MeV/u + Be (0.7 g/cm2) -> ⁵⁰Fe (simulate first 4 excited states up to 8+ level).
- Task 3: Plunger experiment (M. Reese TU-Darmstadt, A. Dewald, Uni. Koeln). Enfasis on angular distribution and contribution of RISING at forward angles

Realistic implementation

- Task 1: Background model or scaled background spectra from prev. experiments
- Task 2: Realistic tracking for event reconstruction (mgt, etc)

List of Tasks for the Working Group (17.07.2009)

Geometry cases

- Task 1: S2 + 5 Double Cluster detectors closing part of the central hole (15-16cm?). Remains shell with 5 crystals hole + pentagon hole
- Task 2: S3 + 1 Double Cluster detector closing part of the central hole (10-11 cm?). Remains shell with 4 crystals hole + pentagon hole.
- Task 3: previous + 4 Triple Clusters enlarging shell (for case one has 15 Clusters available).
- Task 4: C2 geometry, with clusters in 2nd ring pointing to target, and 3rd ring (15 Clusters total)

Physics cases evaluate realistically the performance of the optimal detection system in:

- Task 1: Coulex experiment. Example: Coulex of 104Sn at 100 MeV/u on a 0.4 g/cm2 Au-target.
 Primary beam 124Xe.
- Task 2: Fragmentation experiment. 54Ni at 100 MeV/u + Be (0.7 g/cm2) -> 50Fe (simulate first 4 excited states up to 8+ level).
- Task 3: Plunger experiment (A. Dewald, Chr. Fransen Uni. Koeln). Enfasis on angular distribution and contribution of RISING at forward angles

Realistic implementation

- Task 1: Background model or scaled background spectra from prev. experiments
- Task 2: Realistic tracking for event reconstruction (mgt, etc)

<∆E(C2)> = 10.6 keV

<∆E(C2)> = 10.6 keV

Outline

- Particular constraints for the setup at GSI
- Geometries: shell and compact setups
- Performance comparison
- Viability of additional γ-ray detectors: RISING, HECTOR, etc
- Gain in performance from 10 to 12 Clusters
- Outlook and conclusion

Compatibility with other detection systems

RISING Geant4 Geometry courtesy of Pavel Detistov

Compatibility with other detection systems

RISING Fast Beam Geometry at 70 cm forwards

RISING Geant4 Geometry courtesy of Pavel Detistov

Compatibility with other detection systems

At least the inner ring of RISING is visible from the target position, 1% gain in efficiency (?)

RISING Fast Beam Geometry at 70 cm forwards

RISING Geant4 Geometry courtesy of Pavel Detistov

Outline

- Particular constraints for the setup at GSI
- Geometries: shell and compact setups
- Performance comparison
- Viability of additional γ -ray detectors: RISING, HECTOR, etc
- Gain in performance from 10 to 12 Clusters
- Outlook and conclusion

S- and C-Geometry Performance 12 Clusters

Realistic Tracking (mgt)

List of Tasks for the Working Group (17.07.2009)

Geometry cases

- Task 1: S2 + 5 Double Cluster detectors closing part of the central hole (15-16cm?). Remains shell with 5 crystals hole + pentagon hole
- Task 2: S3 + 1 Double Cluster detector closing part of the central hole (10-11 cm?). Remains shell with 4 crystals hole + pentagon hole.
- Task 3: previous + 4 Triple Clusters enlarging shell (for case one has 15 Clusters available).
- Task 4: C2 geometry, with clusters in 2nd ring pointing to target, and 3rd ring (15 Clusters total)

Conclusion:

- Provided that 10 ATC detectors and 1 "ADC" detector (or more) are available, then a shell geometry (S3' or S2') shows a superior performance than any other possible cylindrical geometry (e.g. C2).
- REALISTIC γ -ray efficiencies between 7% and 9% can be achieved, which in combination with resolutions (FWHM) of 9-10 keV will provide a γ -ray sensitivity of more than 5 times the RISING sensitivity.

C2: Efficiency and Resolution angular dependence

Photopeak Efficiency

<∆E(C2)> = 10.6 keV

S3: Efficiency and Resolution angular dependence

Photopeak Efficiency

Energy Resolution

<∆E(S3)> = 10.3 keV

S-Geometries Performance comparison: Resolution

Shell Geometries performance comparison: Summary

C-Geometries performance comparison: Summary

S- and C-Geometry Performance, Quantitative Comparison

S-Geometries Performance comparison: Efficiency

Performance comparison: general aspects

- Systematic study of efficiency and resolution vs. distance for all geometries
- "Reference physics case": (GEANT4 AGATA code from E.Farnea et al.) \Rightarrow E_{y,o} = 1 MeV, recoil nucleus at β = 0.43 (E = 100 MeV/u), My = 1 Systematic study several distances sec. target – detector Detector Target ak Efficiency vs offset from centre, geometry: prospec v1, β = 0.5 Beam 10 12 distance from centre (cm distance GSI FRS Spatial Beam Profile FWHM x = 6 cm FWHM y = 4 cm Active target source Position Y (mm DSSSD γ-source Position X (mm) y-source Position X (mm) γ-source Position Y (mm)

Particular constraints for the setup at GSI

• two main constraints:

- 1. 15 cluster detectors will not be available yet in 2011/2012 (10-12 instead)
- 2. The beam hole (pentagon) is too small for the GSI beam size

AGATA + Plunger Simulation (Legnaro experiment)

• AGATA Demonstrator (5 triple cluster) + Köln Plunger

Experiment (a)

• AGATA Demonstrator (5 triple cluster) + Köln Plunger

MC Code by E. Farnea and C. Michelagnoli

Experiment (a)

• AGATA Demonstrator (5 triple cluster) + Köln Plunger

MC Code by E. Farnea and C. Michelagnoli

Experiment (a)

• AGATA Demonstrator (5 triple cluster) + Köln Plunger

+ Information from thick-target measurement