AGATA MC Simulations for the fast beam campaign at GSI

César Domingo Pardo

GSI Helmholtzzentrum für Schwerionenforschung

31.03.2009

General aspects

AGATA Code from Enrico Farnea et al. <u>http://agata.pd.infn.it/</u>

GEANT4

• "Physics case":

 $E_{\gamma,o} = 1 \text{ MeV}$ $M\gamma = 1$

Emission source @ $\beta = 0.50$

Study several distances sec. target – detector (:= -d), different geometries

• Data Analysis via ROOT

http://root.cern.ch

• Results summary

http://www-linux.gsi.de/~cdomingo/agata

Stepwise geometry optimisation

• Ideal geometry = first approach, first step

- two main dissadvantages:
 - 1. 15 cluster detectors will not be available yet in 2011/2012
 - 2. The beam hole (pentagonal hole) is too narrow for the GSI beam size

• Geometry constraint: triple clusters (not individual crystals)

Stepwise geometry optimisation

8 Clusters

Hole (11.5 cm) beam-pipe 11 cm

8 Clusters

Hole (11.5 cm) beam-pipe 11 cm

A180euler.list A180eulerprespecv4.list

The Euler angles (degree) and shifts (mm) of the 60 clusters # cl cl# psi(Rz) theta(Ry) phi(Rz) dx dy dz # 0 0 164.302488 21.967863 -5.649422 102.935572 -10.182573 256.432015

44 0 42.906217 106.291521 -20.916343 247.916020 -94.750958 -77.567377 45 0 -156.210622 134.706892 15.424027 189.440679 52.266136 -194.518058 46 0 111.584005 131.663878 52.562301 125.572067 164.017668 -183.811468 # # 50 0 111.584005 131.663878 -163.437699 -197.997103 -58.883672 -183.811468 51 0 -156.210622 134.706892 -128.575973 -122.539465 -153.634630 -194.518058 52 111.584005 131.663878 -91.437699 -5.182770 -206.502490 -183.811468 0 53 -156.210622 134.706892 -56.575973 108.248439 -164.017668 -194.518058 0 54 0 111.584005 131.663878 -19.437699 194.793975 -68.741886 -183.811468 55 0 -15.697512 158.032137 41.649422 77.291461 68.741886 -256.432015 56 0 -15.697512 158.032137 113.649422 -41.493043 94.750958 -256.432015 57 0 -15.697512 158.032137 -174.350578 -102.935572 -10.182573 -256.432015 # 58 0 -15.697512 158.032137 -102.350578 -22.124639 -101.044134 -256.432015 -15.697512 158.032137 -30.350578 59 89.261793 -52.266136 -256.432015 # 0

8 Clusters

Hole (11.5 cm) beam-pipe 11 cm

A180euler.list A180eulerprespecv4.list

The Euler angles (degree) and shifts (mm) of the 60 clusters # cl cl# psi(Rz) theta(Ry) phi(Rz) dx dy dz # 0 0 164.302488 21.967863 -5.649422 102.935572 -10.182573 256.432015

#	44	0	42.9	06217	106.29	91521	-20.916343	3 247.916020	-94.750958	-77.567377
	45	0	-156.2	0622	134.70	6892	15.424027	189.440679	52.266136	-194.518058
#	46	0	111.5	584005	131.6	63878	52.56230	1 125.57206	7 164.017668	3 -183.811468
#	50	0	111.5	584005	131.6	63878	-163.43769	99 -197.99710)3 -58.88367	2 -183.811468
	51	0	-156.2	0622	134.70	6892	-128.575973	3 -122.539465	5 -153.634630	-194.518058
	52	0	111.58	34005	131.66	3878	-91.437699	-5.182770	-206.502490 ·	-183.811468
	53	0	-156.2	0622	134.70	6892	-56.575973	108.248439	-164.017668	-194.518058
	54	0	111.58	34005	131.66	3878	-19.437699	194.793975	-68.741886	-183.811468
	55	0	-15.69	7512	158.03	2137	41.649422	77.291461	68.741886 -2	256.432015
	56	0	-15.69	7512	158.03	2137	113.649422	-41.493043	94.750958 -	256.432015
	57	0	-15.69	7512	158.03	2137 ·	174.350578	-102.935572	-10.182573	-256.432015
#	58	0	-15.6	97512	158.0	32137	-102.35057	8 -22.124639	9 -101.044134	-256.432015
#	59	0	-15.6	97512	158.0	32137	-30.350578	89.261793	-52.266136	-256.432015

8 Clusters

Hole (11.5 cm) beam-pipe 11 cm

/Agata/detector/rotateArray Ry(theta) Rz(phi)

radd.rotateY(thetaShift); radd.rotateZ(phiShift);

/Agata/detector/rotateArray Ry(theta) Rz(phi) Rx(psi)

/Agata/detector/rotateArray 175.0 30.0 -17.0

```
radd.rotateY( thetaShift );
radd.rotateZ( phiShift );
radd.rotateX( psiShift );
```


8 Clusters

Hole (11.5 cm) beam-pipe 11 cm

 $\Delta E = 2 \text{ keV}$ (fwhm) @ $E\gamma = 1 \text{ MeV}$; $\Delta x = 4 \text{ mm}$

8 Clusters

Hole (11.5 cm) beam-pipe 11 cm

8 Clusters

Hole (11.5 cm) beam-pipe 11 cm

Efficiency = 10-11%

FWHM = 6-8 keV

8 Clusters

Hole (11.5 cm) beam-pipe 11 cm

Conclusion / Comparison

8 Clusters

Hole (11.5 cm) beam-pipe 11 cm

AGATA@GSI

Efficiency = 10 %

Resolution = 7 keV (FWHM)

RISING

Efficiency = 3 %

Resolution = 20 keV (FWHM)

About one order of magnitude improvement in sensitivity!

Ersatzfolien

8 Clusters

Hole (11.5 cm) beam-pipe 11 cm

8 Clusters

Hole (11.5 cm) beam-pipe 11 cm

8 Clusters

Hole (11.5 cm) beam-pipe 11 cm

/Agata/detector/rotateArray 175.0 30.0 -17.0

The Euler angles (degree) and shifts (mm) of the 60 clusters # cl cl# psi(Rz) theta(Ry) phi(Rz) dx dy dz # 0 0 164.302488 21.967863 -5.649422 102.935572 -10.182573 256.432015

42.906217 106.291521 -20.916343 # 44 0 247.916020 -94.750958 -77.567377 45 0 -156.210622 134.706892 15.424027 189.440679 52.266136 -194.518058 # 46 0 111.584005 131.663878 52.562301 125.572067 164.017668 -183.811468 # 50 0 111.584005 131.663878 -163.437699 -197.997103 -58.883672 -183.811468 51 0 -156.210622 134.706892 -128.575973 -122.539465 -153.634630 -194.518058 52 0 111.584005 131.663878 -91.437699 -5.182770 -206.502490 -183.811468 53 0 -156.210622 134.706892 -56.575973 108.248439 -164.017668 -194.518058 54 0 111.584005 131.663878 -19.437699 194.793975 -68.741886 -183.811468 55 0 -15.697512 158.032137 41.649422 77.291461 68.741886 -256.432015 56 0 -15.697512 158.032137 113.649422 -41.493043 94.750958 -256.432015 57 0 -15.697512 158.032137 -174.350578 -102.935572 -10.182573 -256.432015 58 0 -15.697512 158.032137 -102.350578 -22.124639 -101.044134 -256.432015 # # 59 0 -15.697512 158.032137 -30.350578 89.261793 -52.266136 -256.432015

10 Clusters

Hole (22.8 cm) beam-pipe 16 cm

GAMMA 1 1000.0000 RECOIL 0.5000 0.0000 0.0000 0.0000 1.0000 0.0000 SOURCE 0 0 0.0000 0.0000 0.0000 \$ -1 1401.723 -0.43045 0.48009 0.76434 0 29 73.617 -142.729 141.623 234.825 52 1.053 $29 \quad 39.475 \cdot 143.302 \quad 150.765 \quad 245.890 \quad 52$ 1.12929 148.895 -151.199 143.686 236.472 51 1.083 $29 \ \ 155.373 \ \textbf{-}151.207 \ \ 143.675 \ \ 236.479 \ 51$ 1.08329 251.516 129.956 144.860 230.891 41 1.007 $29 \ 166.208 \ -129.833 \ 144.792 \ 230.981 \ 41$ 1.00829 163.364 -129.791 144.692 230.949 41 1.008 $29 \hspace{.1in} 132.162 \hspace{.1in} \textbf{-} 129.764 \hspace{.1in} 144.711 \hspace{.1in} 230.911 \hspace{.1in} 41$ 1.008 $29 \quad 86.873 \ \text{-} 129.765 \ 144.716 \ 230.913 \ 41$ 1.008-1 1627.135 0.23197 -0.26644 0.93552 1 1 126.640 125.339 -75.549 240.008 34 1.154 $1 \quad 334.250 \quad 120.598 \quad -82.006 \quad 265.573 \quad 43$ 1.0651 71.117 120.608 -81.984 265.633 43 1.065 $1 \quad 160.091 \quad 120.600 \quad \cdot 81.997 \quad 265.637 \quad 43$ 1.065 $1 \quad 11.067 \ 120.642 \ \ \mathbf{\cdot 81.972} \ \ \mathbf{265.678} \ \mathbf{43}$ 1.065 $1 \quad 45.200 \quad 120.643 \quad -81.971 \quad 265.679 \quad 43$ 1.065-1 1087.822 -0.71426 -0.56881 0.40778 2 -1 1257.962 -0.08354 0.77764 0.62313 3 $24 \ 129.869 \ \ 24.004 \ \ 192.131 \ \ 156.311 \ \ 05$ 0.83630.817 -34.318 197.026 157.088 15 0.87424

Simulation output

10 Clusters

Hole (22.8 cm) beam-pipe 16 cm

GAMMA 1

1000.0000

 RECOIL
 0.5000
 0.0000
 0.0000
 1.0000
 0.0000

 SOURCE
 0
 0.0000
 0.0000
 0.0000
 0.0000

\$

i

Crystal# Edep X Y Z Segment# time

10 Clusters

Hole (22.8 cm) beam-pipe 16 cm

GAMMA 1

1000.0000

RECOIL 0.5000 0.0000 0.0000 0.0000 1.0000 0.0000 SOURCE 0 0 0.0000 0.0000 0.0000 \$

-1 1401.723 -0.43045 0.48009 0.76434 0 29 73.617 -142.729 141.623 234.825 52 1.053 $29 \quad 39.475 \ \ \ 143.302 \ \ 150.765 \ \ 245.890 \ 52$ 1.12929 148.895 -151.199 143.686 236.472 51 1.08329 155.373 151.207 143.675 236.479 51 1.08329 251.516 129.956 144.860 230.891 41 1.00729 166.208 129.833 144.792 230.981 41 1.008 29 163.364 -129.791 144.692 230.949 41 1.008 $29 \hspace{.1in} 132.162 \hspace{.1in} \textbf{-} 129.764 \hspace{.1in} 144.711 \hspace{.1in} 230.911 \hspace{.1in} 41$ 1.00829 86.873 - 129.765 144.716 230.913 41 1.008 -1 1627.135 0.23197 -0.26644 0.93552 1 1 126.640 125.339 -75.549 240.008 34 1.1541 334.250 120.598 -82.006 265.573 43 1.065 $1 \quad 71.117 \quad 120.608 \quad -81.984 \quad 265.633 \quad 43$ 1.0651 160.091 120.600 -81.997 265.637 43 1.0651 11.067 120.642 -81.972 265.678 43 1.065 $1 \quad 45.200 \quad 120.643 \quad -81.971 \quad 265.679 \quad 43$ 1.065-1 1087.822 -0.71426 -0.56881 0.40778 2 -1 1257.962 -0.08354 0.77764 0.62313 3 $24 \quad 129.869 \quad 24.004 \quad 192.131 \quad 156.311 \quad 05$ 0.83624 30.817 -34.318 197.026 157.088 15 0.874

Maximum Edep-Hit determines θ for Doppler correction

10 Clusters

Hole (22.8 cm) beam-pipe 16 cm

GAMMA 1 1000.0000

RECOIL 0.5000 0.0000 0.0000 0.0000 1.0000 0.0000 SOURCE 0 0 0.0000 0.0000 0.0000

\$

```
-1 1401.723 -0.43045 0.48009 0.76434 0
29 73.617 -142.729 141.623 234.825 52
                                               1.053
29 39.475 - 143.302 150.765 245.890 52
                                               1.129
29 148.895 -151.199 143.686 236.472 51
                                                1.083
29 155.373 151.207 143.675 236.479 51
                                                1.083
29 251.516 -129.956 144.860 230.891 41
                                                1.007
29 166.208 129.833 144.792 230.981 41
                                                1.008
29 163.364 -129.791 144.692 230.949 41
                                                1.008
29 \hspace{.1in} 132.162 \hspace{.1in} \textbf{-} 129.764 \hspace{.1in} 144.711 \hspace{.1in} 230.911 \hspace{.1in} 41
                                                1.008
29 86.873 - 129.765 144.716 230.913 41
                                                1.008
-1 1627.135 0.23197 -0.26644 0.93552 1
1 126.640 125.339 -75.549 240.008 34
                                               1.154
1 334.250 120.598 -82.006 265.573 43
                                               1.065
1 \quad 71.117 \quad 120.608 \quad -81.984 \quad 265.633 \quad 43
                                               1.065
1 160.091 120.600 -81.997 265.637 43
                                               1.065
1 11.067 120.642 -81.972 265.678 43
                                               1.065
1 \quad 45.200 \quad 120.643 \quad -81.971 \quad 265.679 \quad 43
                                               1.065
-1 1087.822 -0.71426 -0.56881 0.40778 2
-1 1257.962 -0.08354 0.77764 0.62313 3
24 \quad 129.869 \quad -24.004 \quad 192.131 \quad 156.311 \quad 05
                                               0.836
24 30.817 -34.318 197.026 157.088 15
                                               0.874
```

Deposited energy folded with a Gauss distribution to introduce energy resolution (2 keV @ $E\gamma=1$ MeV)

10 Clusters

Hole (22.8 cm) beam-pipe 16 cm

GAMMA 1

1000.0000 RECOIL 0.5000 0.0000 0.0000 0.0000 1.0000 0.0000 SOURCE 0 0 0.0000 0.0000 0.0000

\$

-1 1401.723 -0.43045 0.48009 0.76434 0 29 73.617 -142.729 141.623 234.825 52 1.05329 39.475 -143.302 150.765 245.890 52 1.12929 148.895 -151.199 143.686 236.472 51 1.08329 155.373 - 151.207 143.675 236.479 51 1.08329 251.516 129.956 144.860 230.891 41 1.00729 166.208 - 129.833 144.792 230.981 41 1.008 29 163.364 129.791 144.692 230.949 41 1.00829 132.162 -129.764 144.711 230.911 41 1.00829 86.873 - 129.765 144.716 230.913 41 1.008-1 1627.135 0.23197 -0.26644 0.93552 1 1 126.640 125.339 -75.549 240.008 34 1.1541 334.250 120.598 -82.006 265.573 43 1.065 $1 \quad 71.117 \quad 120.608 \quad -81.984 \quad 265.633 \quad 43$ 1.0651 160.091 120.600 -81.997 265.637 43 1.0651 11.067 120.642 -81.972 265.678 43 1.065 $1 \quad 45.200 \quad 120.643 \quad -81.971 \quad 265.679 \quad 43$ 1.065-1 1087.822 -0.71426 -0.56881 0.40778 2 -1 1257.962 -0.08354 0.77764 0.62313 3 24 129.869 24.004 192.131 156.311 05 0.83624 30.817 -34.318 197.026 157.088 15 0.874

x, y, z folded with a Gauss distribution to introduce spatial resolution of 4 mm FWHM (actually 5 mm)

10 Clusters

Hole (22.8 cm) beam-pipe 16 cm

 $\Delta E = 2 \text{ keV}$ (fwhm) @ $E\gamma = 1 \text{ MeV}$; $\Delta x = 4 \text{ mm}$

Efficiency results for 10 Cluster Ring

10 Clusters

Hole (22.8 cm) beam-pipe 16 cm

Peak/Total (?)

